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§1. Introduction 

 Since the waveform inversion for determining the source process was invented in the 1980s, 

many researchers have developed analytical methods [e.g., Hartzell and Heaton (1983), 

Beroza and Spudich (1988), Sekiguchi et al. (2000), Ji et al. (2002), Yagi and Fukahata (2011)]. 

Currently, program sources for classical analysis methods are distributed [e.g., Kikuchi and 

Kanamori (2006)], and these methods have been applied to many earthquakes [e.g., Lay et al. 

(2011)]. 

 In many source process analyses, filters are often applied to the observed waveforms and 

Green's functions to reduce modeling errors in the Green's functions or to remove noise. 

However, it is known that the applied filters can change the solution [e.g., Cho and Nakanishi 

(2000)]. In this section, we discuss the meaning of applying filters in waveform inversion, 

using a simple case. 

 

§2. source process analysis 

§2.1 Considerations in the time domain 

 Consider the case of fault slip on a fault plane Σ. For simplicity, the discussion will proceed 

with the equation for data from a single point and a single component, but the same conclusion 

can be reached for the case of multiple observation points and multiple components. The 

observed seismic waveform u can be written as follows. 
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.       (1) 

 

where  and  are the Green's functions and the slip rate function on the fault plane  ,  

is the coordinates on the fault plane, e is the observation error, and  is the convolution with 

respect to time. The modeling error is assumed to be negligible. Applying the filter  to 

the above equation, we obtain 

 

.     (2) 

 

The result is as follows. Now, discretizing the slip distribution of the fault in time and space 

and describing it vectorially, we obtain 

 

.        (3) 

 

B is the matrix in which the filter is run, an N × N matrix where N is the number of data, u 

is the N-row data vector, G is the N × M kernel matrix where M is the number of model 

parameters, m is the M-row model vector, and e is the N-row error vector. The least-squares 

solution  is 

 

,       (4) 

 

where  is the covariance matrix of the filtered data . Assuming that the observation 

error is uncorrelated and Gaussian with mean zero, the data covariance matrix is 

 

,         (5) 

 

 
u t( ) = G ξ,t( )*

Σ∫ !D ξ,t( )dΣ + e t( )

G  !D Σ ξ

*

B t( )

 
B t( )*u t( ) = B t( )*G ξ,t( )*

Σ∫ !D ξ,t( )dΣ + B t( )*e t( )

Bu = BGm+Be

m̂

m̂ = GTBTCd
−1BG( )−1GTBTCd

−1Bu

Cd Bu

Cd =σ
2BBT



 3 

where 2 is the variance of the observation error. Since the filter matrix is an N × N square 

matrix, the least-squares solution is 

 

,        (6) 

 

The least-squares solution is obtained independent of the filter employed. In other words, the 

least-squares solution is obtained independently of the filter employed. This result holds even 

when constraint conditions are imposed on the solution. 

 Many analyses treat the data covariance matrix as a diagonal matrix. This assumption 

corresponds to the assumption that the data covariance matrix after applying the filter can be 

approximated by a Gaussian distribution with mean zero and no correlation. In other words, 

the data covariance matrix after applying the filter can be approximated by  

 

,        (7) 

 

where  is the identity matrix. If the number of data and the number of model parameters 

are the same, then  is a square matrix, and if the inverse matrix exists, then 

 

.      (8) 

 

Even when the covariance of the errors is approximated as in equation (7), the result of the 

analysis is independent of the filter employed. 

 If the filter is applied only to the observed waveform and not to the Green's function, we 

obtain a filtered slip time function [Nakano et al. (2008)]. The solution in this case is 

 

σ

m̂ = GTG( )−1GTu
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G

m̂ = GTBTBG( )−1GTBTBu =G−1u
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.         (9) 

 

§2.2 Considerations in the frequency domain 

 To simplify the problem, we assume a point epicenter. The observation equation when the 

filter is applied at this time is 

 

.     (10) 

 

The moment-rate function is where  is the location of the point source and  is the 

moment rate function. When discretizing the moment rate function, the number of model 

parameters and the sampling interval are the same as the number of data and the sampling 

interval. Fourier transforming equation (10) yields 

 

.     (11) 

 

The following is an example of the Fourier transform. where f is the frequency and the 

superscript ~ denotes the Fourier transform. Since the moment rate function to be obtained is 

obtained by division, it can be understood more directly that the solution obtained is 

independent of frequency. 

 In actual analysis, it is known that the solution varies depending on the filter applied. Why 

do the solutions change depending on the filter applied? Many studies employ a condition to 

constrain the solution by approximating the observation error after applying a filter with an 

uncorrelated Gaussian distribution with mean zero. Consider the Dumped Least Square 

Solution (DLSS), which introduces the simplest constraint condition. If the seismic 

waveforms at times outside the range of analysis are set to zero, the DLSS is obtained by 

minimizing:  

 

m̂ = GTG( )−1GTBu

 B t( )*u t( ) = B t( )*G ξC ,t( )* !M 0 t( ) + B t( )*e t( )

ξC  
!M 0

 
!B f( ) !u f( ) = !B f( ) !G ξC , f( ) "!M 0 f( ) + !B f( ) !e f( )
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.   (12) 

where  is a hyperparameter that controls the strength of the constraint. Using Perceval's 

theorem, eq. (12) becomes 

 

.    (13) 

 

The solution can be obtained independently for each frequency. Therefore, the solution 

corresponding to the DLSS is 

 

,      (14)  

 

where the superscript  means complex conjugate. The DLSS solution corresponds to the 

solution with water level correction [Gubbins (2004)]. In the frequency band removed by the 

filter, the DLSS solution is more complex than  

 

        (15) 

 

Therefore, we obtain a solution that reflects only the DLSS constraint condition that the model 

weights are zero. In other words, in the frequency band removed by the filter, the solution 

obtained is determined by the constraint condition. As a result, the analytical results will vary 

depending on the filter employed. If we return to the time domain, we obtain a solution for 

the moment rate function with filters similar to those applied to the observed waveform and 

the Green's function. The same conclusion is obtained when a finite fault model is employed. 

 Also, the solution corresponding to the DLSS when the observation error before applying 
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the filter is an uncorrelated Gaussian distribution with mean zero is 

 

        (16) 

 

and the solution obtained is independent of the filter. In other words, the solution changes 

depending on how the error model is assumed. The setting of the error model is one of the 

most important items when performing inverse analysis [e.g., Yagi and Fukahata (2011)]. 

   

§3. Conclusion 

  The result that the analytical results varied with the filter employed was caused by (1) 

the assumption that the observation error after applying the filter could be approximated by 

an uncorrelated Gaussian distribution with mean zero, and (2) the application of constraints. 

 Considering that the source image in the filtered frequency band is determined by the 

constraints, it is desirable to use waves with the widest possible bandwidth to obtain an 

appropriate source image. On the other hand, if a narrow bandwidth filter is applied to the 

DLSS, the moment rate function will have a filtered source image similar to the filter applied 

to the observed waveform and the Green's function. 

 Although not discussed in this paper, further discussion of the properties of the moment-

rate functions obtained is warranted if smoothing and nonnegative constraints are applied and 

a simplified error model is assumed. 
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